RRC ID 75618
著者 Jiao Liu, Leru Liu, Lu Tian, Shaoming Xu, Guojiang Wu, Huawu Jiang, Yaping Chen
タイトル Overexpression of LjPLT3 Enhances Salt Tolerance in Lotus japonicus
ジャーナル International Journal of Molecular Sciences
Abstract Intracellular polyols are used as osmoprotectants by many plants under environmental stress. However, few studies have shown the role of polyol transporters in the tolerance of plants to abiotic stresses. Here, we describe the expression characteristics and potential functions of Lotus japonicus polyol transporter LjPLT3 under salt stress. Using LjPLT3 promoter-reporter gene plants showed that LjPLT3 was expressed in the vascular tissue of L. japonicus leaf, stem, root, and nodule. The expression was also induced by NaCl treatment. Overexpression of LjPLT3 in L. japonicus modified the growth rate and saline tolerance of the transgenic plants. The OELjPLT3 seedlings displayed reduced plant height under both nitrogen-sufficient and symbiotic nitrogen fixation conditions when 4 weeks old. The nodule number of OELjPLT3 plants was reduced by 6.7–27.4% when 4 weeks old. After exposure to a NaCl treatment in Petri dishes for 10 days, OELjPLT3 seedlings had a higher chlorophyll concentration, fresh weight, and survival rate than those in the wild type. For symbiotic nitrogen fixation conditions, the decrease in nitrogenase activity of OELjPLT3 plants was slower than that of the wild type after salt treatment. Compared to the wild type, both the accumulation of small organic molecules and the activity of antioxidant enzymes were higher under salt stress. Considering the concentration of lower reactive oxygen species (ROS) in transgenic lines, we speculate that overexpression of LjPLT3 in L. japonicus might improve the ROS scavenging system to alleviate the oxidative damage caused by salt stress, thereby increasing plant salinity tolerance. Our results will direct the breeding of forage legumes in saline land and also provide an opportunity for the improvement of poor and saline soils.
巻・号 24
ページ 5149
公開日 2023-3-8
DOI 10.3390/ijms24065149
PMID 36982224
PMC PMC10048936
MeSH Gene Expression Regulation, Plant Lotus* / metabolism Plant Breeding Plant Proteins / genetics Plant Proteins / metabolism Plants, Genetically Modified / metabolism Reactive Oxygen Species / metabolism Salt Tolerance* / genetics Seedlings / metabolism Sodium Chloride / metabolism Sodium Chloride / pharmacology Stress, Physiological / genetics
IF 4.556
リソース情報
ミヤコグサ・ダイズ Miyakojima MG-20