RRC ID 76077
Author Tsutsui K, Kim HS, Yoshikata C, Kimura K, Kubota Y, Shibata Y, Tian C, Liu J, Nishiwaki K.
Title Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans.
Journal Sci Rep
Abstract Repulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the region abutting the vulval muscles. The drag-1 mutants exhibited defects in HSN axon branching in addition to a small body size phenotype. DRAG-1 expression in the hypodermal cells was required for the branching of the axons. Although DRAG-1 is normally expressed in the ventral hypodermis excepting the vulval region, its ectopic expression in vulval precursor cells was sufficient to induce the branching. The C-terminal glycosylphosphatidylinositol anchor of DRAG-1 was important for its function, suggesting that DRAG-1 should be anchored to the cell surface. Genetic analyses suggested that the membrane receptor UNC-40 acts in the same pathway with DRAG-1 in HSN branching. We propose that DRAG-1 expressed in the ventral hypodermis signals via the UNC-40 receptor expressed in HSNs to elicit branching activity of HSN axons.
Volume 11(1)
Pages 22370
Published 2021-11-16
DOI 10.1038/s41598-021-01853-8
PII 10.1038/s41598-021-01853-8
PMID 34785759
PMC PMC8595726
MeSH Animals Axon Guidance* Axons / metabolism* Caenorhabditis elegans / genetics Caenorhabditis elegans / metabolism* Caenorhabditis elegans Proteins / genetics Caenorhabditis elegans Proteins / metabolism* Gene Expression Regulation* Nerve Tissue Proteins / genetics Nerve Tissue Proteins / metabolism*
Resource
C.elegans tm3773