RRC ID |
81641
|
Author |
Kashojiya S, Lu Y, Takayama M, Komatsu H, Minh LHT, Nishida K, Shirasawa K, Miura K, Nonaka S, Masuda JI, Kondo A, Ezura H, Ariizumi T.
|
Title |
Modification of tomato breeding traits and plant hormone signaling by target-AID, the genome-editing system inducing efficient nucleotide substitution.
|
Journal |
Hortic Res
|
Abstract |
Target activation-induced cytidine deaminase (Target-AID), a novel CRISPR/Cas9-based genome-editing tool, confers the base-editing capability on the Cas9 genome-editing system. It involves the fusion of cytidine deaminase (CDA), which catalyzes cytidine (C) to uridine (U) substitutions, to the mutated nickase-type nCas9 or deactivated-type dCas9. To confirm and extend the applicability of the Target-AID genome-editing system in tomatoes (Solanum lycopersicum L.), we transformed the model tomato cultivar "Micro-Tom" and commercial tomato cultivars using this system by targeting SlDELLA, which encodes a negative regulator of the plant phytohormone gibberellic acid (GA) signaling pathway. We confirmed that the nucleotide substitutions were induced by the Target-AID system, and we isolated mutants showing high GA sensitivity in both "Micro-Tom" and the commercial cultivars. Moreover, by successfully applying this system to ETHYLENE RECEPTOR 1 (SlETR1) with single sgRNA targeting, double sgRNA targeting, as well as dual-targeting of both SlETR1 and SlETR2 with a single sgRNA, we demonstrated that the Target-AID genome-editing system is a promising tool for molecular breeding in tomato crops. This study highlights an important aspect of the scientific and agricultural potential of the combinatorial use of the Target-AID and other base-editing systems.
|
Volume |
9
|
Published |
2022-1-19
|
DOI |
10.1093/hr/uhab004
|
PII |
6511229
|
PMID |
35043178
|
PMC |
PMC8795821
|
Resource |
Tomato |
TOMJPF00001
TOMJPF0017 |