Author |
Wu W, Guo L, Yin L, Cai B, Li J, Li X, Yang J, Zhou H, Tao Z, Li Y.
|
Abstract |
Despite increasing reports of convergent adaptation, evidence for genomic convergence across diverse species worldwide is lacking. Here, our study of 205 Archaeplastida genomes reveals evidence of genomic convergence through tandem duplication (TD) across different lineages of root plants despite their genomic diversity. TD-derived genes, notably prevalent in trees with developed root systems embedded in soil, are enriched in enzymatic catalysis and biotic stress responses, suggesting adaptations to environmental pressures. Correlation analyses suggest that many factors, particularly those related to soil microbial pressures, are significantly associated with TD dynamics. Conversely, flora transitioned to aquatic, parasitic, halophytic, or carnivorous lifestyles-reducing their interaction with soil microbes-exhibit a consistent decline in TD frequency. This trend is further corroborated in mangroves that independently adapted to hypersaline intertidal soils, characterized by diminished microbial activity. Our findings propose TD-driven genomic convergence as a widespread adaptation to soil microbial pressures among terrestrial root plants.
|