RRC ID 10858
Author Inagaki Y, Hisatomi Y, Iida S.
Title Somatic mutations caused by excision of the transposable element, Tpn1, from the DFR gene for pigmentation in sub-epidermal layer of periclinally chimeric flowers of Japanese morning glory and their germinal transmission to their progeny.
Journal Theor. Appl. Genet.
Abstract Pigmentation in flowers of Japanese morning glory is intense in the epidermal layer, lighter in the subepidermis, and much lighter in the internal tissues; by contrast coloration in stems occurs only in the sub-epidermal layer. The a-3 (f) mutant of Japanese morning glory bears white flowers with normal-colored flecks and sectors, and its variegation also occurs in leaves and stems. The mutable line can produce chimeric flowers pigmented uniformly in the sub-epidermal tissue and variegated in the epidermal layer, and stems of these flowers are also pigmented. Since they give selfed progeny that segregate to give a ratio of three germinal revertants bearing fully colored flowers to one flecked mutant, it has been [OR Imai (1934) has] postulated that somatic mutations in the sub-epidermal layer can be transmitted to the next generation and that the germ cells in the reproductive organs must form from the cells of the sub-epidermal layer. Recently, we found that the 6.4-kb En/Spm-related transposable element, Tpn1, resides within the DFR-B gene for anthocyanin biosynthesis in the mutable a-3 (f) line. To test whether somatic mutations caused by Tpn1 excision from the DFR-B gene in the subepidermis of periclinally chimeric flowers are transmissible to their progeny, we have examined the structure of the DFR-B region in the germinal revertants derived from the chimeric flowers and compared the sequences generated by the somatic excision of Tpn1 in periclinally chimeric flowers with those in their germinal revertants. Our results confirm that somatic mutations caused by Tpn1 excision from the DFR-B gene in the sub-epidermal tissue of chimeric flowers can be transmitted to their progeny, which results in the generation of germinal revertants.
Volume 92(5)
Pages 499-504
Published 1996-4
DOI 10.1007/BF00224550
PMID 24166315
IF 3.93
Times Cited 28
WOS Category AGRONOMY HORTICULTURE PLANT SCIENCES GENETICS & HEREDITY
Resource
Morning Glory AK9