RRC ID 46044
著者 Chang C, Hsieh YW, Lesch BJ, Bargmann CI, Chuang CF.
タイトル Microtubule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal asymmetry in C. elegans.
ジャーナル Development
Abstract The axons of C. elegans left and right AWC olfactory neurons communicate at synapses through a calcium-signaling complex to regulate stochastic asymmetric cell identities called AWC(ON) and AWC(OFF). However, it is not known how the calcium-signaling complex, which consists of UNC-43/CaMKII, TIR-1/SARM adaptor protein and NSY-1/ASK1 MAPKKK, is localized to postsynaptic sites in the AWC axons for this lateral interaction. Here, we show that microtubule-based localization of the TIR-1 signaling complex to the synapses regulates AWC asymmetry. Similar to unc-43, tir-1 and nsy-1 loss-of-function mutants, specific disruption of microtubules in AWC by nocodazole generates two AWC(ON) neurons. Reduced localization of UNC-43, TIR-1 and NSY-1 proteins in the AWC axons strongly correlates with the 2AWC(ON) phenotype in nocodazole-treated animals. We identified kinesin motor unc-104/kif1a mutants for enhancement of the 2AWC(ON) phenotype of a hypomorphic tir-1 mutant. Mutations in unc-104, like microtubule depolymerization, lead to a reduced level of UNC-43, TIR-1 and NSY-1 proteins in the AWC axons. In addition, dynamic transport of TIR-1 in the AWC axons is dependent on unc-104, the primary motor required for the transport of presynaptic vesicles. Furthermore, unc-104 acts non-cell autonomously in the AWC(ON) neuron to regulate the AWC(OFF) identity. Together, these results suggest a model in which UNC-104 may transport some unknown presynaptic factor(s) in the future AWC(ON) cell that non-cell autonomously control the trafficking of the TIR-1 signaling complex to postsynaptic regions of the AWC axons to regulate the AWC(OFF) identity.
巻・号 138(16)
ページ 3509-18
公開日 2011-8-1
DOI 10.1242/dev.069740
PII dev.069740
PMID 21771813
PMC PMC3143565
MeSH Animals Body Patterning* Caenorhabditis elegans / genetics Caenorhabditis elegans / growth & development Caenorhabditis elegans / metabolism* Caenorhabditis elegans Proteins / genetics Caenorhabditis elegans Proteins / metabolism Calcium Signaling* Gene Expression Regulation, Developmental Kinesins / metabolism Microtubules / metabolism* Synapses / metabolism*
IF 5.611
引用数 33
WOS 分野 DEVELOPMENTAL BIOLOGY
リソース情報
線虫 tm3036