RRC ID 46384
著者 Kim S, Shin EJ, Hahm JH, Park PJ, Hwang JE, Paik YK.
タイトル PDHK-2 deficiency is associated with attenuation of lipase-mediated fat consumption for the increased survival of Caenorhabditis elegans dauers.
ジャーナル PLoS One
Abstract In Caenorhabditis elegans, slow fat consumption has been suggested to contribute to the extension of the survival rate during nutritionally adverse conditions. Here, we investigated the potential role of pyruvate dehydrogenase kinase (PDHK)-2, the C. elegans homolog of mammalian PDK, effects on fat metabolism under nutritional conditions. PDHK-2 was expressed at low levels under well-fed conditions but was highly induced during long-term starvation and in the dauer state. This increase in pdhk-2 expression was regulated by both DAF-16 and NHR-49. Dauer-specific induction of PDHK-2 was abolished upon entry into the post-dauer stage. Interestingly, in the long-term dauer state, stored fat levels were higher in daf-2(e1370);pdhk-2 double mutants than in daf-2(e1370), suggesting a positive relationship between PDHK-2 activity and fat consumption. PDHK-2 deficiency has been shown to lead to greater preservation of residual fats, which would be predicted to contribute to survival during the dauer state. A test of this prediction showed that the survival rates of daf-2(e1370);pdhk-2(tm3075) and daf-2(e1370);pdhk-2(tm3086) double mutants were higher than that of daf-2(e1370), suggesting that loss of either the ATP-binding domain (tm3075) or branched chain keto-acid dehydrogenase kinase domain (tm3086) of PDHK-2 leads to reduced fat consumption and thus favors increased dauer survival. This attenuated fat consumption in the long-term dauer state of C. elegans daf-2 (e1370);pdhk-2 mutants was associated with concomitant down-regulation of the lipases ATGL (adipose triglyceride lipase), HSL (hormone-sensitive lipase), and C07E3.9 (phospholipase). In contrast, PDHK-2 overexpression in wild-type starved worms induced lipase expression and promoted abnormal dauer formation. Thus, we propose that PDHK-2 serves as a molecular bridge, connecting fat metabolism and survival under nutritionally adverse conditions in C. elegans.
巻・号 7(7)
ページ e41755
公開日 2012-1-1
DOI 10.1371/journal.pone.0041755
PII PONE-D-12-17642
PMID 22848591
PMC PMC3407204
MeSH Animals Caenorhabditis elegans / enzymology* Caenorhabditis elegans / growth & development* Caenorhabditis elegans / metabolism Caenorhabditis elegans / physiology Caenorhabditis elegans Proteins / metabolism Down-Regulation Energy Metabolism Fatty Acids / metabolism* Forkhead Transcription Factors Gene Expression Regulation, Developmental Gene Expression Regulation, Enzymologic Lipase / metabolism* Protein Serine-Threonine Kinases / deficiency* Protein Serine-Threonine Kinases / genetics Protein Transport Pyruvate Dehydrogenase Acetyl-Transferring Kinase Receptors, Cytoplasmic and Nuclear / metabolism Starvation Survival Analysis Transcription Factors / metabolism
IF 2.74
引用数 3
WOS 分野 BIOCHEMISTRY & MOLECULAR BIOLOGY
リソース情報
線虫 tm3075 tm3086