RRC ID 47953
Author Jost M, Taketa S, Mascher M, Himmelbach A, Yuo T, Shahinnia F, Rutten T, Druka A, Schmutzer T, Steuernagel B, Beier S, Taudien S, Scholz U, Morgante M, Waugh R, Stein N.
Title A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence.
Journal Plant Physiol
Abstract Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected.
Volume 171(2)
Pages 1113-27
Published 2016-6-1
DOI 10.1104/pp.16.00124
PII pp.16.00124
PMID 27208226
PMC PMC4902598
MeSH Arabidopsis Proteins / chemistry* Arabidopsis Proteins / metabolism Base Pairing / genetics Chromosome Mapping Cloning, Molecular Ecotype Genes, Homeobox* Genes, Plant* Genetic Variation Hordeum / anatomy & histology* Hordeum / genetics* Inflorescence / anatomy & histology* Molecular Sequence Annotation Mutation Phenotype Phylogeny Plants, Genetically Modified Recombination, Genetic / genetics Sequence Analysis, DNA Sequence Deletion Sequence Homology, Amino Acid*
IF 6.902
Times Cited 21
Barley Core collection