RRC ID 48081
Author Hasunuma T, Sakamoto T, Kondo A.
Title Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids.
Journal Appl. Microbiol. Biotechnol.
Abstract Improving the production of ethanol from xylose is an important goal in metabolic engineering of Saccharomyces cerevisiae. Furthermore, S. cerevisiae must produce ethanol in the presence of weak acids (formate and acetate) generated during pre-treatment of lignocellulosic biomass. In this study, weak acid-containing xylose fermentation was significantly improved using cells that were acclimated to the weak acids during pre-cultivation. Transcriptome analyses showed that levels of transcripts for transcriptional/translational machinery-related genes (RTC3 and ANB1) were enhanced by formate and acetate acclimation. Recombinant yeast strains overexpressing RTC3 and ANB1 demonstrated improved ethanol production from xylose in the presence of the weak acids, along with improved tolerance to the acids. Novel metabolic engineering strategy based on the combination of short-term acclimation and system-wide analysis was developed, which can develop stress-tolerant strains in a short period of time, although conventional evolutionary engineering approach has required long periods of time to isolate inhibitor-adapted strains.
Volume 100(2)
Pages 1027-38
Published 2016-1
DOI 10.1007/s00253-015-7094-z
PII 10.1007/s00253-015-7094-z
PMID 26521247
MeSH Acclimatization / genetics Acclimatization / physiology* Acetic Acid / metabolism Biomass Ethanol / metabolism Fermentation* Formates / metabolism Gene Expression Profiling Hydrolysis Metabolic Engineering* Peptide Initiation Factors / genetics RNA-Binding Proteins / genetics Saccharomyces cerevisiae / genetics* Saccharomyces cerevisiae / metabolism* Saccharomyces cerevisiae Proteins / genetics Xylose / metabolism*
IF 3.34
Times Cited 3
Yeast pGK425