RRC ID 52116
著者 Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, Nishida H, Inoue T, Taguchi A, Ogishima J, Eguchi S, Yamashita A, Tomio K, Wada-Hiraike O, Oda K, Nagamatsu T, Osuga Y, Fujii T.
タイトル Targeting glutamine metabolism and the focal adhesion kinase additively inhibits the mammalian target of the rapamycin pathway in spheroid cancer stem-like properties of ovarian clear cell carcinoma in vitro.
ジャーナル Int J Oncol
Abstract Ovarian cancer is one of the leading causes of death in the world, which is linked to its resistance to chemotherapy. Strategies to overcome chemoresistance have been keenly investigated. Culturing cancer cells in suspension, which results in formation of spheroids, is a more accurate reflection of clinical cancer behavior in vitro than conventional adherent cultures. By performing RNA-seq analysis, we found that the focal adhesion pathway was essential in spheroids. The phosphorylation of focal adhesion kinase (FAK) was increased in spheroids compared to adherent cells, and inhibition of FAK in spheroids resulted in inhibition of the downstream mammalian target of the rapamycin (mTOR) pathway in ovarian clear cell carcinomas. This result also suggested that only using a FAK inhibitor might have limitations because the phosphorylation level of FAK could not be reduced to the level in adherent cells, and it appeared that some combination therapies might be necessary. We previously reported that glutamine and glutamate concentrations were higher in spheroids than adherent cells, and we investigated a synergistic effect targeting glutamine metabolism with FAK inhibition on the mTOR pathway. The combination of AOA, a pan-transaminase inhibitor, and PF 573228, a FAK inhibitor, additively inhibited the mTOR pathway in spheroids from ovarian clear cell carcinomas. Our in vitro study proposed a rationale for the positive and negative effects of using FAK inhibitors in ovarian clear cell carcinomas and suggested that targeting glutamine metabolism could overcome the limitation of FAK inhibitors by additively inhibiting the mTOR pathway.
巻・号 50(4)
ページ 1431-1438
公開日 2017-4-1
DOI 10.3892/ijo.2017.3891
PMID 28259988
MeSH Adenocarcinoma, Clear Cell / drug therapy* Aminooxyacetic Acid / therapeutic use Cell Culture Techniques / methods Cell Line, Tumor Drug Resistance, Neoplasm / drug effects Drug Therapy, Combination Enzyme Inhibitors / therapeutic use* Female Focal Adhesion Kinase 1 / antagonists & inhibitors Focal Adhesion Kinase 1 / metabolism* Glutamine / metabolism* Humans Ovarian Neoplasms / drug therapy* Phosphorylation Quinolones / therapeutic use RNA, Messenger / genetics Sequence Analysis, RNA Signal Transduction / drug effects* Spheroids, Cellular Sulfones / therapeutic use TOR Serine-Threonine Kinases / metabolism* Transaminases / antagonists & inhibitors
IF 3.899
引用数 2
リソース情報
ヒト・動物細胞 JHOC-5(RCB1520)