RRC ID 54413
著者 Seike T, Shimoda C, Niki H.
タイトル Asymmetric diversification of mating pheromones in fission yeast.
ジャーナル PLoS Biol
Abstract In fungi, mating between partners depends on the molecular recognition of two peptidyl mating pheromones by their respective receptors. The fission yeast Schizosaccharomyces pombe (Sp) has two mating types, Plus (P) and Minus (M). The mating pheromones P-factor and M-factor, secreted by P and M cells, are recognized by the receptors mating type auxiliary minus 2 (Mam2) and mating type auxiliary plus 3 (Map3), respectively. Our recent study demonstrated that a few mutations in both M-factor and Map3 can trigger reproductive isolation in S. pombe. Here, we explored the mechanism underlying reproductive isolation through genetic changes of pheromones/receptors in nature. We investigated the diversity of genes encoding the pheromones and their receptor in 150 wild S. pombe strains. Whereas the amino acid sequences of M-factor and Map3 were completely conserved, those of P-factor and Mam2 were very diverse. In addition, the P-factor gene contained varying numbers of tandem repeats of P-factor (4-8 repeats). By exploring the recognition specificity of pheromones between S. pombe and its close relative Schizosaccharomyces octosporus (So), we found that So-M-factor did not have an effect on S. pombe P cells, but So-P-factor had a partial effect on S. pombe M cells. Thus, recognition of M-factor seems to be stringent, whereas that of P-factor is relatively relaxed. We speculate that asymmetric diversification of the two pheromones might be facilitated by the distinctly different specificities of the two receptors. Our findings suggest that M-factor communication plays an important role in defining the species, whereas P-factor communication is able to undergo a certain degree of flexible adaptation-perhaps as a first step toward prezygotic isolation in S. pombe.
巻・号 17(1)
ページ e3000101
公開日 2019-1-1
DOI 10.1371/journal.pbio.3000101
PII PBIOLOGY-D-18-00457
PMID 30668560
PMC PMC6342294
MeSH ATP-Binding Cassette Transporters / metabolism Amino Acid Sequence / genetics DNA-Binding Proteins Genes, Fungal / genetics Genes, Mating Type, Fungal / physiology* Homeodomain Proteins / genetics Homeodomain Proteins / metabolism Meiosis Mutation Peptides / genetics* Peptides / metabolism Pheromones / genetics Pheromones / metabolism Receptors, Pheromone / genetics Receptors, Pheromone / metabolism* Receptors, Pheromone / physiology Reproduction Reproductive Isolation Schizosaccharomyces / metabolism Schizosaccharomyces pombe Proteins / genetics* Schizosaccharomyces pombe Proteins / metabolism Transcription Factors / genetics Transcription Factors / metabolism
IF 7.076
引用数 3
リソース情報
酵母