RRC ID 59494
Author Geisler F, Coch RA, Richardson C, Goldberg M, Bevilacqua C, Prevedel R, Leube RE.
Title Intestinal intermediate filament polypeptides in C. elegans: Common and isotype-specific contributions to intestinal ultrastructure and function.
Journal Sci Rep
Abstract The abundance and diversity of intermediate filaments (IFs) in the C. elegans intestine indicate important contributions to intestinal function and organismal wellbeing. Fluorescent IF reporters localize below the actin-rich brush border and are highly enriched in the lumen-enveloping endotube, which is attached to the C. elegans apical junction. Mapping intestinal viscoelasticity by contact-free Brillouin microscopy reveals that the IF-rich endotube is positioned at the interface between the stiff brush border and soft cytoplasm suggesting a mechanical buffering function to deal with the frequent luminal distortions occurring during food intake and movement. In accordance, depletion of IFB-2, IFC-2 and IFD-2 leads to intestinal lumen dilation although depletion of IFC-1, IFD-1 and IFP-1 do not. Ultrastructural analyses of loss of function mutants further show that IFC-2 mutants have a rarefied endotube and IFB-2 mutants lack an endotube altogether. Remarkably, almost all IFB-2- and IFC-2-deficient animals develop to fertile adults. But developmental retardation, reduced brood size, altered survival and increased sensitivity to microbial toxin, osmotic and oxidative stress are seen in both mutants albeit to different degrees. Taken together, we propose that individual intestinal IF polypeptides contribute in different ways to endotube morphogenesis and cooperate to cope with changing environments.
Volume 10(1)
Pages 3142
Published 2020-2-21
DOI 10.1038/s41598-020-59791-w
PII 10.1038/s41598-020-59791-w
PMID 32081918
PMC PMC7035338
MeSH Actin Cytoskeleton / metabolism Actins / chemistry Animals Bacterial Proteins / metabolism Caenorhabditis elegans Caenorhabditis elegans Proteins / metabolism Cytoskeleton / metabolism Elasticity Green Fluorescent Proteins / metabolism Intermediate Filament Proteins / metabolism Intermediate Filaments / metabolism* Intermediate Filaments / ultrastructure* Intestinal Mucosa / metabolism Intestines / ultrastructure* Luminescent Proteins / metabolism Microvilli / metabolism Microvilli / ultrastructure Mutation Oxidative Stress Viscosity
IF 4.011
C.elegans tm4255