RRC ID 71574
Author Hirano K, Nonami Y, Nakamura Y, Sato T, Sato T, Ishiguro KI, Ogawa T, Yoshida S.
Title Temperature sensitivity of DNA double-strand break repair underpins heat-induced meiotic failure in mouse spermatogenesis.
Journal Commun Biol
Abstract Mammalian spermatogenesis is a heat-vulnerable process that occurs at low temperatures, and elevated testicular temperatures cause male infertility. However, the current reliance on in vivo assays limits their potential to detail temperature dependence and destructive processes. Using ex vivo cultures of mouse testis explants at different controlled temperatures, we found that spermatogenesis failed at multiple steps, showing sharp temperature dependencies. At 38 °C (body core temperature), meiotic prophase I is damaged, showing increased DNA double-strand breaks (DSBs) and compromised DSB repair. Such damaged spermatocytes cause asynapsis between homologous chromosomes and are eliminated by apoptosis at the meiotic checkpoint. At 37 °C, some spermatocytes survive to the late pachytene stage, retaining high levels of unrepaired DSBs but do not complete meiosis with compromised crossover formation. These findings provide insight into the mechanisms and significance of heat vulnerability in mammalian spermatogenesis.
Volume 5(1)
Pages 504
Published 2022-5-26
DOI 10.1038/s42003-022-03449-y
PII 10.1038/s42003-022-03449-y
PMID 35618762
PMC PMC9135715
MeSH Animals DNA DNA Breaks, Double-Stranded* Hot Temperature Male Mammals / genetics Meiosis* Mice Spermatogenesis / genetics Temperature
IF 4.165
Mice RBRC00886