RRC ID 74704
著者 Ren M, Yang Y, Heng KHY, Ng LY, Chong CY, Ng YT, Gorur-Shandilya S, Lee RMQ, Lim KL, Zhang J, Koh TW.
タイトル MED13 and glycolysis are conserved modifiers of α-synuclein-associated neurodegeneration.
ジャーナル Cell Rep
Abstract α-Synuclein (α-syn) is important in synucleinopathies such as Parkinson's disease (PD). While genome-wide association studies (GWASs) of synucleinopathies have identified many risk loci, the underlying genes have not been shown for most loci. Using Drosophila, we screened 3,471 mutant chromosomes for genetic modifiers of α-synuclein and identified 12 genes. Eleven modifiers have human orthologs associated with diseases, including MED13 and CDC27, which lie within PD GWAS loci. Drosophila Skd/Med13 and glycolytic enzymes are co-upregulated by α-syn-associated neurodegeneration. While elevated α-syn compromises mitochondrial function, co-expressing skd/Med13 RNAi and α-syn synergistically increase the ratio of oxidized-to-reduced glutathione. The resulting neurodegeneration can be suppressed by overexpressing a glycolytic enzyme or treatment with deferoxamine, suggesting that compensatory glycolysis is neuroprotective. In addition, the functional relationship between α-synuclein, MED13, and glycolytic enzymes is conserved between flies and mice. We propose that hypoxia-inducible factor and MED13 are part of a druggable pathway for PD.
巻・号 41(12)
ページ 111852
公開日 2022-12-20
DOI 10.1016/j.celrep.2022.111852
PII S2211-1247(22)01744-2
PMID 36543134
MeSH Animals Drosophila / metabolism Drosophila Proteins* / genetics Drosophila Proteins* / metabolism Eye Proteins / metabolism Genome-Wide Association Study Glycolysis Humans Mediator Complex / metabolism Mice Parkinson Disease* / metabolism Synucleinopathies* alpha-Synuclein / genetics alpha-Synuclein / metabolism
IF 8.109
リソース情報
ショウジョウバエ