RRC ID 20812
Author Maruyama S, Misawa K, Iseki M, Watanabe M, Nozaki H.
Title Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes.
Journal BMC Evol Biol
Abstract BACKGROUND:Plastids have inherited their own genomes from a single cyanobacterial ancestor, but the majority of cyanobacterial genes, once retained in the ancestral plastid genome, have been lost or transferred into the eukaryotic host nuclear genome via endosymbiotic gene transfer. Although previous studies showed that cyanobacterial gnd genes, which encode 6-phosphogluconate dehydrogenase, are present in several plastid-lacking protists as well as primary and secondary plastid-containing phototrophic eukaryotes, the evolutionary paths of these genes remain elusive.
RESULTS:Here we show an extended phylogenetic analysis including novel gnd gene sequences from Excavata and Glaucophyta. Our analysis demonstrated the patchy distribution of the excavate genes in the gnd gene phylogeny. The Diplonema gene was related to cytosol-type genes in red algae and Opisthokonta, while heterolobosean genes occupied basal phylogenetic positions with plastid-type red algal genes within the monophyletic eukaryotic group that is sister to cyanobacterial genes. Statistical tests based on exhaustive maximum likelihood analyses strongly rejected that heterolobosean gnd genes were derived from a secondary plastid of green lineage. In addition, the cyanobacterial gnd genes from phototrophic and phagotrophic species in Euglenida were robustly monophyletic with Stramenopiles, and this monophyletic clade was moderately separated from those of red algae. These data suggest that these secondary phototrophic groups might have acquired the cyanobacterial genes independently of secondary endosymbioses.
CONCLUSION:We propose an evolutionary scenario in which plastid-lacking Excavata acquired cyanobacterial gnd genes via eukaryote-to-eukaryote lateral gene transfer or primary endosymbiotic gene transfer early in eukaryotic evolution, and then lost either their pre-existing or cyanobacterial gene.
Volume 8
Pages 151
Published 2008-5-17
DOI 10.1186/1471-2148-8-151
PII 1471-2148-8-151
PMID 18485228
PMC PMC2416651
MeSH Bayes Theorem Chlorophyta / enzymology Chlorophyta / genetics Cyanobacteria / enzymology* Cyanobacteria / genetics* DNA, Complementary Evolution, Molecular Gene Library Gene Transfer, Horizontal* Genome, Bacterial Genome, Plant Likelihood Functions Phosphogluconate Dehydrogenase / genetics* Phylogeny Plants / enzymology Plants / genetics Plastids / enzymology* Plastids / genetics* Polymerase Chain Reaction Rhodophyta / enzymology Rhodophyta / genetics
IF 3.058
Times Cited 13
Algae NIES-48