RRC ID 2782
Author Mulhern ML, Madson CJ, Danford A, Ikesugi K, Kador PF, Shinohara T.
Title The unfolded protein response in lens epithelial cells from galactosemic rat lenses.
Journal Invest. Ophthalmol. Vis. Sci.
Abstract PURPOSE:Diabetic complications are associated with hypoglycemia and hyperglycemia. The purpose of this study was to investigate the effect of both glucose deprivation and hyperglycemia on the induction of endoplasmic reticulum (ER) stress and the subsequent activation of the unfolded protein response (UPR) that results in apoptosis in in vitro cultured lens epithelial cells (LECs) and in vivo cataract formation in galactose-fed rats.
METHODS:Lenses from rats fed a standard diet containing 50% galactose with or without an aldose reductase inhibitor (ARI) were investigated. Transformed human LECs were cultured in standard 10% FCS-DMEM containing various concentrations of sugar. UPR-specific proteins from both the rat lenses and lens cultures were quantified by protein blot analysis. Cell death was evaluated with TUNEL staining and ethidium homodimer-1 (EthD) dyes. Reactive oxygen species (ROS) were quantified with H2-DCF, and free glutathione (GSH) levels were measured with a commercial GSH quantification kit.
RESULTS:Increased apoptosis of the LECs was observed in the lenses of rats fed the galactose diet for 5 to 9 days, and nuclear cataracts subsequently developed in these lenses after 13 to 15 days. Protein blot analysis of the LECs from these galactose-fed rats showed higher levels of the UPR-specific proteins Bip/GRP78, ATF4, and CHOP. These LECs also demonstrated activation of the UPR-specific procaspase-12 and the increased presence of ROS, whereas GSH was reduced. Because these results indicate that the UPR is activated in LECs along with the production of ROS and apoptosis during cataract formation in the galactose-fed rats, subsequent studies were conducted to determine the role of nonenzymatic glycation, osmotic stress, and oxidative stress on these biochemical processes. In vitro cultures of human LECs showed that the UPR was induced by osmotic and oxidative stress, but not by glycation. In addition, the UPR and apoptosis in LECs was induced by glucose deprivation. The ARI blocked the induction of the UPR, cell death, and cataract formation.
CONCLUSIONS:The UPR that is induced by abnormally high or low concentrations of sugar is linked to the production of ROS, increased apoptosis in LECs, and cataract formation. The inhibition of the UPR induction by ARI suggests that osmotic stress may be the primary inducer of the UPR. Modulation of the UPR pathways may offer novel methods for the development of therapeutic tools to delay cataracts.
Volume 47(9)
Pages 3951-9
Published 2006-9
DOI 10.1167/iovs.06-0193
PII 47/9/3951
PMID 16936110
MeSH Activating Transcription Factor 4 / metabolism Animals Apoptosis Caspases / metabolism Cataract / metabolism Cataract / pathology* Cells, Cultured Crystallins / metabolism* Endoplasmic Reticulum / metabolism Endoplasmic Reticulum / pathology Epithelial Cells / metabolism Epithelial Cells / pathology* Female Galactose / administration & dosage Galactosemias / metabolism Galactosemias / pathology* Glutathione / metabolism Heat-Shock Proteins / metabolism Hyperglycemia / metabolism Hyperglycemia / pathology Hypoglycemia / metabolism Hypoglycemia / pathology Immunoblotting In Situ Nick-End Labeling Lens, Crystalline / metabolism Lens, Crystalline / pathology* Molecular Chaperones / metabolism Oxidative Stress Protein Denaturation* Rats Rats, Sprague-Dawley Reactive Oxygen Species / metabolism Transcription Factor CHOP / metabolism
IF 3.812
Times Cited 69