RRC ID 3636
Author Torayama I, Ishihara T, Katsura I.
Title Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone.
Journal J. Neurosci.
Abstract Behavioral plasticity induced by the integration of two sensory signals, such as associative learning, is an important issue in neuroscience, but its evolutionary origin and diversity have not been explored sufficiently. We report here a new type of such behavioral plasticity, which we call butanone enhancement, in Caenorhabditis elegans adult hermaphrodites: C. elegans specifically enhances chemotaxis to butanone by preexposure to butanone and food. Mutant analysis revealed that this plasticity requires the AWC(ON) olfactory neuron, whose fate is known to be determined by the NSY-1/ASK1 MAPKKK (mitogen-activated protein kinase kinase kinase) cascade as well as the DAF-11 and ODR-1 guanylyl cyclases. These proteins also control many aspects of olfactory sensation/plasticity in AWC neurons and seem to provide appropriate cellular conditions for butanone enhancement in the AWC(ON) neuron. Butanone enhancement also required the functions of Bardet-Biedl syndrome genes in the AWC(ON) neuron but not other genes that control ciliary transport. Furthermore, preexposure to butanone and the odor of food was enough for the enhancement of butanone chemotaxis. These results suggest that the AWC(ON) olfactory neuron may conduct a behavioral plasticity resembling associative learning and that the functions of Bardet-Biedl syndrome genes in sensory cilia may play an important role in this plasticity.
Volume 27(4)
Pages 741-50
Published 2007-1-24
DOI 10.1523/JNEUROSCI.4312-06.2007
PII 27/4/741
PMID 17251413
MeSH Amino Acid Sequence Animals Behavior, Animal / drug effects Behavior, Animal / physiology* Butanones / pharmacology* Caenorhabditis elegans / drug effects Caenorhabditis elegans / physiology* Chemotaxis / drug effects Chemotaxis / physiology* Food* Molecular Sequence Data Mutation Odorants Olfactory Receptor Neurons / drug effects Olfactory Receptor Neurons / physiology* Signal Transduction / drug effects Signal Transduction / physiology* Smell / drug effects Smell / physiology
IF 5.971
Times Cited 41
WOS Category NEUROSCIENCES
Resource
C.elegans tm445 tm501