RRC ID 39796
著者 Tsunekawa B, Wada M, Ikeda M, Banba S, Kamachi H, Tanaka E, Honjo M.
タイトル The binding between the stem regions of human growth hormone (GH) receptor compensates for the weaker site 1 binding of 20-kDa human GH (hGH) than that of 22-kDa hGH.
ジャーナル J Biol Chem
Abstract Despite the lower site 1 affinity of the 20-kDa human growth hormone (20K-hGH) for the hGH receptor (hGHR), 20K-hGH has the same hGHR-mediated activity as 22-kDa human GH (22K-hGH) at low hGH concentration and even higher activity at high hGH concentration. This study was performed to elucidate the reason why 20K-hGH can activate hGHR to the same level as 22K-hGH. To answer the question, we hypothesized that the binding between the stem regions of hGHR could compensate for the weaker site 1 binding of 20K-hGH than that of 22K-hGH in the sequential binding with hGHR. To demonstrate it, we prepared 15 types of alanine-substituted hGHR gene at the stem region and stably transfected them into Ba/F3 cells. Using these cells, we measured and compared the cell proliferation activities between 20K- and 22K-hGH. As a result, the activity of 20K-hGH was markedly reduced than that of 22K-hGH in three types of mutant hGHR (T147A, H150A, and Y200A). Regarding these mutants, the dissociation constant of hGH at the first and second step (KD1 and KD2) in the sequential binding with two hGHRs was predicted based on the mathematical cell proliferation model and computational simulation. Consequently, it was revealed that the reduction of the activity in 20K-hGH was attributed to the change of not KD1 but KD2. In conclusion, these findings support our hypothesis, which can account for the same potencies for activating hGHR between 20K- and 22K-hGH, although the site 1 affinity of 20K-hGH is lower than that of 22K-hGH.
巻・号 275(21)
ページ 15652-6
公開日 2000-5-26
DOI 10.1074/jbc.M001236200
PII S0021-9258(19)80344-7
PMID 10748003
MeSH Animals Binding Sites Cell Division / genetics Cell Line Dimerization Human Growth Hormone / pharmacology* Humans Membrane Proteins / genetics Membrane Proteins / metabolism* Mice Mutation Protein Binding Recombinant Proteins / metabolism Transfection
IF 4.238
引用数 9
WOS 分野 BIOCHEMISTRY & MOLECULAR BIOLOGY
リソース情報
ヒト・動物細胞