RRC ID 74689
著者 Li H, Yu Z, Niu Z, Cheng Y, Wei Z, Cai Y, Ma F, Hu L, Zhu J, Zhang W.
タイトル A neuroprotective role of Ufmylation through Atg9 in the aging brain of Drosophila.
ジャーナル Cell Mol Life Sci
Abstract Ufmylation is a recently identified small ubiquitin-like modification, whose biological function and relevant cellular targets are poorly understood. Here we present evidence of a neuroprotective role for Ufmylation involving Autophagy-related gene 9 (Atg9) during Drosophila aging. The Ufm1 system ensures the health of aged neurons via Atg9 by coordinating autophagy and mTORC1, and maintaining mitochondrial homeostasis and JNK (c-Jun N-terminal kinase) activity. Neuron-specific expression of Atg9 suppresses the age-associated movement defect and lethality caused by loss of Ufmylation. Furthermore, Atg9 is identified as a conserved target of Ufm1 conjugation mediated by Ddrgk1, a critical regulator of Ufmylation. Mammalian Ddrgk1 was shown to be indispensable for the stability of endogenous Atg9A protein in mouse embryonic fibroblast (MEF) cells. Taken together, our findings might have important implications for neurodegenerative diseases in mammals.
巻・号 80(5)
ページ 129
公開日 2023-4-22
DOI 10.1007/s00018-023-04778-9
PII 10.1007/s00018-023-04778-9
PMID 37086384
MeSH Adaptor Proteins, Signal Transducing / genetics Adaptor Proteins, Signal Transducing / metabolism Aging* / genetics Aging* / metabolism Animals Autophagy-Related Proteins* / genetics Autophagy-Related Proteins* / metabolism Brain* / metabolism Drosophila* / metabolism Drosophila Proteins* / genetics Drosophila Proteins* / metabolism Fibroblasts / metabolism Mammals / metabolism Membrane Proteins / metabolism Mice Ubiquitin-Protein Ligases / genetics Ubiquitin-Protein Ligases / metabolism
IF 6.496
リソース情報
ショウジョウバエ DGRC#109029 HMS01352 HMJ30245 5862R-1