RRC ID 12588
Author Krapp A, Collin P, Cokoja A, Dischinger S, Cano E, Simanis V.
Title The Schizosaccharomyces pombe septation initiation network (SIN) is required for spore formation in meiosis.
Journal J Cell Sci
Abstract When nutrients are abundant, S. pombe cells grow as rods, dividing by fission after formation of a medially placed cell wall or division septum. Septum formation is triggered by a group of proteins, called the septation initiation network or SIN, that trigger contraction of the acto-myosin contractile ring at the end of mitosis. Ectopic activation of the SIN can uncouple septum formation from other cell-cycle events, whereas loss of SIN signalling gives rise to multinucleated cells due to the failure of cytokinesis. When starved, S. pombe cells of opposite mating types fuse to form a diploid zygote that undergoes meiosis and produces four spores. No septa or contractile rings are formed during meiosis. In this study, we have investigated the role of the SIN in meiosis. Our data show that, whereas the meiotic divisions appear normal, SIN mutants cannot form spores. Forespore membrane formation is initiated, but the nuclei are not encapsulated properly. The SIN proteins localise to the spindle pole body in meiosis. The protein kinases Sid1p and Cdc7p do not associate with the spindle pole body until meiosis II, when forespore membrane deposition begins. These data indicate a role for the SIN in regulating spore formation during meiosis.
Volume 119(Pt 14)
Pages 2882-91
Published 2006-7-15
DOI 10.1242/jcs.03025
PII jcs.03025
PMID 16787941
MeSH Cell Membrane / metabolism Diploidy Meiosis* Mutation / genetics Protein Transport Schizosaccharomyces / cytology* Schizosaccharomyces / metabolism* Schizosaccharomyces / physiology Schizosaccharomyces pombe Proteins / metabolism Signal Transduction Spores, Fungal / cytology* Spores, Fungal / growth & development Spores, Fungal / metabolism*
IF 4.573
Times Cited 27
WOS Category CELL BIOLOGY
Resource
Yeast