RRC ID 51919
Author Tsubaki M, Fujiwara D, Takeda T, Kino T, Tomonari Y, Itoh T, Imano M, Satou T, Sakaguchi K, Nishida S.
Title The sensitivity of head and neck carcinoma cells to statins is related to the expression of their Ras expression status, and statin-induced apoptosis is mediated via suppression of the Ras/ERK and Ras/mTOR pathways.
Journal Clin Exp Pharmacol Physiol
Abstract Statins induce apoptosis of tumour cells by inhibiting the prenylation of small G-proteins. However, the details of the apoptosis-inducing mechanisms remain poorly understood. The present study showed that the induction of apoptosis by statins in four different human head and neck squamous cell carcinoma (HNSCC) cell lines, HSC-3, HEp-2, Ca9-22, and SAS cells was mediated by increased caspase-3 activity. Statins induced apoptosis by the suppression of geranylgeranyl pyrophosphate biosynthesis. Furthermore, statins decreased the levels of phosphorylated ERK and mTOR by inhibiting the membrane localization of Ras and enhancing Bim expression in HSC-3 and HEp-2 cells. We also found that in all the cell types analyzed, the IC50 values for fluvastatin and simvastatin were highest in HEp-2 cells. In addition, HSC-3, Ca9-22, and SAS cells had higher Ras expression and membrane localization, higher activation of ERK1/2 and mTOR, and lower levels of Bim expression than HEp-2 cells. Our results indicate that statins induce apoptosis by increasing the activation of caspase-3 and by enhancing Bim expression through inhibition of the Ras/ERK and Ras/mTOR pathways. Furthermore, the sensitivity of HNSCC cells to statin treatment was closely related to Ras expression and prenylation levels, indicating that statins may act more effectively against tumours with high Ras expression and Ras-variability. Therefore, our findings support the use of statins as potential anticancer agents.
Volume 44(2)
Pages 222-234
Published 2017-2-1
DOI 10.1111/1440-1681.12690
PMID 27805296
MeSH Apoptosis / drug effects* Bcl-2-Like Protein 11 / genetics Bcl-2-Like Protein 11 / metabolism* Caspase 3 / metabolism Cell Culture Techniques Cell Line, Tumor Cell Survival / drug effects Head and Neck Neoplasms* / metabolism Head and Neck Neoplasms* / pathology Humans Hydroxymethylglutaryl-CoA Reductase Inhibitors / pharmacology* MAP Kinase Signaling System / drug effects* TOR Serine-Threonine Kinases / genetics TOR Serine-Threonine Kinases / metabolism* ras Proteins / genetics ras Proteins / metabolism*
IF 2.456
Times Cited 13
Human and Animal Cells Ca9-22(RCB1976)