RRC ID 59317
著者 Baskoylu SN, Yersak J, O'Hern P, Grosser S, Simon J, Kim S, Schuch K, Dimitriadi M, Yanagi KS, Lins J, Hart AC.
タイトル Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration.
ジャーナル PLoS Genet
Abstract Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS pathogenesis. However, the impact of SOD1 loss of function in ALS cannot be directly examined in overexpression models. In addition, overexpression may obscure the contribution of SOD1 loss of function in the degeneration of different neuronal populations. Here, we report the first single-copy, ALS knock-in models in C. elegans generated by transposon- or CRISPR/Cas9- mediated genome editing of the endogenous sod-1 gene. Introduction of ALS patient amino acid changes A4V, H71Y, L84V, G85R or G93A into the C. elegans sod-1 gene yielded single-copy/knock-in ALS SOD1 models. These differ from previously reported overexpression models in multiple assays. In single-copy/knock-in models, we observed differential impact of sod-1 ALS alleles on glutamatergic and cholinergic neurodegeneration. A4V, H71Y, G85R, and G93A animals showed increased SOD1 protein accumulation and oxidative stress induced degeneration, consistent with a toxic gain of function in cholinergic motor neurons. By contrast, H71Y, L84V, and G85R lead to glutamatergic neuron degeneration due to sod-1 loss of function after oxidative stress. However, dopaminergic and serotonergic neuronal populations were spared in single-copy ALS models, suggesting a neuronal-subtype specificity previously not reported in invertebrate ALS SOD1 models. Combined, these results suggest that knock-in models may reproduce the neurotransmitter-type specificity of ALS and that both SOD1 loss and gain of toxic function differentially contribute to ALS pathogenesis in different neuronal populations.
巻・号 14(10)
ページ e1007682
公開日 2018-10-1
DOI 10.1371/journal.pgen.1007682
PII PGENETICS-D-18-01401
PMID 30296255
PMC PMC6200258
MeSH Amino Acid Sequence Amyotrophic Lateral Sclerosis / genetics* Amyotrophic Lateral Sclerosis / pathology Animals Animals, Genetically Modified Base Sequence CRISPR-Cas Systems Caenorhabditis elegans / genetics* Caenorhabditis elegans Proteins / genetics* Cholinergic Neurons / metabolism Cholinergic Neurons / pathology* Disease Models, Animal Gain of Function Mutation Gene Frequency Gene Knock-In Techniques Glutamic Acid / metabolism Humans Loss of Function Mutation Motor Neurons / metabolism Motor Neurons / pathology* Superoxide Dismutase / genetics* Superoxide Dismutase-1 / genetics*
IF 5.224
引用数 1
リソース情報
線虫 tm776