RRC ID 35777
Author Inagawa Y, Yamada K, Yugawa T, Ohno S, Hiraoka N, Esaki M, Shibata T, Aoki K, Saya H, Kiyono T.
Title A human cancer xenograft model utilizing normal pancreatic duct epithelial cells conditionally transformed with defined oncogenes.
Journal Carcinogenesis
Abstract Pancreatic ductal adenocarcinomas (PDACs) are considered to arise through neoplastic transformation of human pancreatic duct epithelial cells (HPDECs). In order to evaluate the biological significance of genetic and epigenetic alterations in PDACs, we isolated primary HPDECs and established an in vitro carcinogenesis model. Firstly, lentivirus-mediated transduction of KRAS(G12V), MYC and human papillomavirus 16 (HPV16) E6/E7 under the control of a tetracyclin-inducible promoter efficiently immortalized and transformed primary HPDECs, which gave rise to adenocarcinomas subcutaneously in an immune-deficient mouse xenograft model, depending on expression of the four genes. The tumors regressed promptly upon shutting-off the oncogenes, and the remaining tissues showed histological features corresponding to normal ductal structures with simple columnar epithelium. Reexpression of the oncogenes resulted in development of multiple PDACs through pancreatic intraepithelial neoplasia-like structures. We also succeeded in efficient immortalization of primary HPDECs with transduction of mutant CDK4, cyclin D1 and TERT. The cells maintained a normal diploid status and formed duct-like structures in a three-dimensional culture. In combination with p53 silencing, KRAS(G12V) alone was sufficient to fully transform the immortalized HPDECs, and MYC markedly accelerated the development of tumors. Our PDAC model supports critical roles of KRAS mutations, inactivation of the p53 and p16-pRB pathways, active telomerase and MYC expression in pancreatic carcinogenesis and thus recapitulates many features of human PDAC development. The present system with reversible control of oncogene expression enabled de novo development of PDAC from quasinormal human tissues preformed subcutaneously in mice and might be applicable to carcinogenesis models in many organ sites.
Volume 35(8)
Pages 1840-6
Published 2014-8-1
DOI 10.1093/carcin/bgu112
PII bgu112
PMID 24858378
MeSH Animals Blotting, Western Carcinoma, Pancreatic Ductal / genetics Carcinoma, Pancreatic Ductal / metabolism Carcinoma, Pancreatic Ductal / pathology* Cell Culture Techniques Cell Transformation, Neoplastic / genetics Cell Transformation, Neoplastic / metabolism Cell Transformation, Neoplastic / pathology* Cells, Cultured Cyclin D1 / genetics Cyclin-Dependent Kinase 4 / genetics Epithelial Cells / metabolism Epithelial Cells / pathology* Female Gene Expression Regulation, Neoplastic* Humans Immunoenzyme Techniques Mice Mice, Inbred BALB C Mice, Nude Mutation / genetics Oncogenes / physiology* Pancreatic Ducts / metabolism Pancreatic Ducts / pathology* Pancreatic Neoplasms / genetics Pancreatic Neoplasms / metabolism Pancreatic Neoplasms / pathology* Proto-Oncogene Proteins / genetics Proto-Oncogene Proteins p21(ras) RNA, Messenger / genetics Real-Time Polymerase Chain Reaction Reverse Transcriptase Polymerase Chain Reaction Telomerase / genetics Tumor Suppressor Protein p53 / genetics Xenograft Model Antitumor Assays ras Proteins / genetics
IF 4.603
Times Cited 9
DNA material CSII-CMV-RfA (RDB04386) CSII-EF-RfA (RDB04387).